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An efficient approach has been adopted for the synthesis of biodiesel developed from karanja, a

nonedible oil feedstock. A two-step reaction was followed for synthesis of biodiesel. Karanja oil

possessing a high free fatty acid content was esterified with sulfuric acid, and the product obtained

was further converted to fatty acid alkyl esters (biodiesel) by transesterification reactions. A moderate

molar ratio of 6:1 (methanol/oil) was efficient for acid esterification with 1.5% v/v H2SO4 and 1 h of

reaction time at 60 ( 0.5 �C, which resulted in reduction of FFA from 19.88 to 1.86 mg of KOH/g.

During alkaline transesterification, 8:1 molar ratio (methanol/oil), 0.8 wt % sodium hydroxide (NaOH),

1.0 wt % sodium methoxide (CH3ONa), or 1.0 wt % potassium hydroxide (KOH) as catalyst at 60 (
0.5 �C gave optimized yield (90-95%) and high conversion (96-100%). Optimum times for alkaline

transesterification were 45 min for CH3ONa and 1 h for NaOH and KOH. Conversion of karanja oil

feedstock to its respective fatty acid methyl esters was identified on a gas chromatograph-mass

spectrometer and determined by 1H nuclear magnetic resonance and gas chromatography. The fuel

properties, such as cetane number of the methyl ester synthesized, were studied and found to be

within the limits and specification of ASTM D 6751 and EN 14112 except for oxidation stability.
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INTRODUCTION

Stringent environmental rules and legislation governing world-
wide and recent awakening to the realization of dismal scenario of
fossil fuel availability have led to the emergence of renewable
fuels. Biodiesel, derived from locally available feedstock, has
shown promise as an alternative to the depleting fossil reserves. In
addition, being renewable, it also helps in curbing the now so-
called notorious “carbon” and other harmful emissions in the
form of hydrocarbons; particulate matter; benzene, toluene,
ethylbenzene, xylene (BTEX); and other undesirable elements.
Biodiesel has been developed from feedstocks ranging from a
variety of edible and nonedible oils. Prominent edible oils that are
being developed for biodiesel preparation are rapeseed, soybean,
sunflower, canola, palm, and coconut oils (1-9). Those falling
into the category of nonedible oils are mainly jatropha, karanja,
mahua, polanga, sea mango, and others (10-15). The fruit of the
trees (i.e., in form of seeds) is used to extract oil. As the oil
extracted fromkaranja seeds is nonedible, its application becomes
limited and is used in industries that pertain mainly to soap
manufacture. The karanja tree grows naturally in many parts of
the world including India, and the oil extracted from their seeds is
economical, comparable to edible vegetable oils. Also, cultivation
of these plants is easy as they can be grown even on wastelands.
Karanja is a medium-sized tree found in all parts of India. The

plant has striking features: it is resistant to drought and has a high
tolerance to salinity. The tree takes 4-7 years to mature. In a
hectare, 1111 karanja trees can be planted with a spacing of 3� 3
m. The yield of kernels per tree is reported between 8 and 24 kg.
Each kernel contains one seed of karanja. Thirty-three percent of
oil can be extracted from the seeds of karanja (16, 17), so the
amount of oil that can be harvested from a hectare of land will
range between 2933 and 8799 kg. In Indian context, those plants
that have been explored for biodiesel development are the ones
whose oil extract is nonedible. The reason for this is that India is a
developing nation and a net importer of edible oils and, hence,
cannot afford any edible oil for biodiesel production. The
commonly employed feedstocks for biodiesel synthesis at the
research level in India are jatropha (Jatropha curcas), karanja
(Pongamia pinnata), mahua (Madhuca indica), rubber (Ficus
elastica), polanga (Calophyllum inophyllum), andothers. Jatropha
and karanja are particularly emphasized for biodiesel synthesis
mainly because they contain toxicants and hence have limited
applications. In Indian context, the National Policy on Biofuel
has been prepared by theMinistry ofNew andRenewableEnergy
(MNRE), which is the body governing the usage of renewable
energy resources.MNRE targets a 20%blending of biofuels such
as bioethanol and biodiesel with the fossil-derivedmineral fuel by
2017 (18). It thus becomes imperative to search for potential
nonedible feedstocks and their suitability for biodiesel synthesis.
The government of India has taken an initiative and has chosen
jatropha and karanja for growth along railway tracks, which can

*Corresponding author (e-mail ysharma.apc@itbhu.ac.in; tele-
phone þ91 5426702865).



Article J. Agric. Food Chem., Vol. 58, No. 1, 2010 243

be considered utilization of the land, and in the long run, these
two plants can serve as potential sources for feedstock for
biodiesel production.

Thus, these oils have drawn the attention of researchers for a
possible biodiesel feedstock. Among them, karanja is also sought
after owing to its limited usage and the presence of toxicants (12).
The toxicants that make the karanja oil nonedible are furano-
flavones, furanoflavonols, chremenoflavones, flavones, and fur-
anodiketones. Its limited applicability is quite obvious. Its usage
is reported to be just 6% of its potential, which amounts to 8000
million tones of 135,000 million tones (19). Initial work done by
us has also been reported on the possible application of karanja
oil as potential feedstock for the preparation of biodiesel (12). In
continuation of the above work, further work has been carried
out for high yield of biodiesel and optimization of parameters to
obtain high yield and conversion to methyl esters. Further study
will strengthen its applicability as a popular feedstock for
biodiesel synthesis in the Indian scenario. Transesterification
reaction was adopted for conversion of triglycerides to their
respective esters and glycerol as a coproduct.

MATERIALS AND METHODS

Materials. P. pinnata seeds were procured from a rural area of
Jharkhand state of India. Oil from the seeds was expelled in a mechanical
expeller and thereafter in a Soxhlet extractionapparatus using cyclohexane
as solvent. The method adopted was as given by Manirakiza et al. (20).
Sodium methoxide (CH3ONa) was purchased from Lobachemie, Mum-
bai, India. Sodium hydroxide (NaOH) and potassium hydroxide (KOH)
were purchased from Qualigens Fine Chemicals, Mumbai, India. Synth-
esis grade methanol ofg99% assay ande0.2%water content, orthopho-
sphoric acid (85% pure), sodium sulfate dry purified, and sulfuric acid
(H2SO4) 98% GR were procured from Merck Limited, Mumbai, India.
Doubly distilled water was prepared in the laboratory.

Transesterification Reaction. Transesterification has been known to
be the best available technology for conversion of oils to their respective
esters (21). For alkaline transesterification to take place, the acid value of
the feedstock should be lowered to a safe limit to avoid saponification
reaction. The desired acid value of the feedstock is <2% for alkaline
transesterification to take place (22). As karanja oil possesses a high
amount of free fatty acids (FFA), a two-step reaction was carried out. The
first step, called esterification reaction, was performed to lower the FFA to
the desired limit (i.e., <2%). In the process, the FFA is converted to fatty
acid methyl esters. Thereafter, alkaline transesterification was performed
for conversion of oil with lowered acid value to fatty acid methyl esters.
The reactionwas carried out in a three-neck round-bottom flask fittedover
a condenser with a thermometer in the side neck. Amechanical stirrer was
inserted through the middle neck for thorough stirring. Two hundred
grams of oil was taken for experimentation purpose. The oil was
previously dried in a hot-air oven. Drying of oil was done until a constant
weight was obtained. No change in the weight of oil was observed after 2 h
at 105 �C and thus is considered optimum to remove the moisture content
from karanja oil. Onemilliliter of H2SO4 was added to methanol (6 mol of
that of oil) and then kept in the glass reactor over a heating mantle for
reaction. The reactants were stirred continuously for 1 h duration at
600 rpm at 50 ( 0.5 �C. The temperature and rate of stirring were
monitored continuously to maintain uniformity. After completion of the

acid esterification reaction, the products were kept over a separating
funnel until separation of the oil, water, and unreacted methanol phase.
The top layer comprised unreacted methanol, whereas the middle layer
was oil and FAME (small amount obtained by conversion of free fatty
acids to esters), and water at the bottom layer. Alkaline transesterification
is feasiblewith low free fatty acid (i.e.,<2%) content in the oil. Thus, after
observation of the desired low acid value, alkaline transesterification was
carried out with 1 wt% of the catalyst (either CH3ONa, NaOH, or KOH)
withmethanol (6mol of that of oil). Reactants were then stirred for 1 h in a
mechanical stirrer over a heating mantle at 600 rpm at 50 ( 0.5 �C. After
completion of transesterification reaction, the product was again kept in a
separating funnel for separation. A distinct layer was formed separating
glycerol with fatty acid methyl esters. Whereas glycerol settled at the
bottomdue to gravity, the fatty acidmethyl esters formedby conversion of
fatty acids to their respective esters occupied the topmost layer. Methanol
that was left over after reaction emulsified in both the glycerol phase and
ester phase. As methanol is soluble in water, it was removed from the ester
phase by washing with water. Methanol dissolved in water was drained.
Water left over in the biodiesel product was then removed by passage over
anhydrous sodium sulfate.

Purification of Biodiesel. After completion of the reaction, the
product obtained was kept in a separating funnel until separation of
distinct layers of esters and glycerol. Glycerol, being dense compared to
esters, settled at the bottom of the separating funnel. After removal of
glycerol, the reaction was quenched with orthophosphoric acid. Tempera-
ture was brought to room temperature by applying ice to the outer surface
of the separating funnel. The product was washed with doubly distilled
water and dried over anhydrous sodium sulfate. Methanol was used as
alcohol for esterification and transesterification because of its lower cost
and shorter reaction time taken for completion of reaction as compared to
ethanol (23).

Characterization of Biodiesel and Instrumentation Involved. Gas
chromatography (GC) has been used for the determination of the fatty
acid profile of the oil. The composition and constituents of fatty acids
present inP. pinnata oil are shown inTable 1. The instrument GC (Perkin-
Elmer XL Autosystem GC) was equipped with a FID detector with a 14
mL carrier packed column. The temperature was raised from 60 to 240 �C
at 4 �C/min and held for 5 min.

The fatty acid methyl ester (biodiesel) identification was confirmed by
gas chromatography-mass spectrometry (GC-MS) on a Shimadzu
QP-2000 instrument at 70 eV and 250 �C. GC column configurations
were as follows: ULBON HR-1 equivalent to OV-1, fused silica capillary
(0.25 mm� 50M) with film thickness of 0.25 μm. The initial temperature
was 60 �C for 5 min and then raised at the rate of 5 �C/min to 250 �C. 1H
NMRperformed on the instrument JEOLAL300 FTNMRhas been used
in the estimation of conversion of oil to fatty acid methyl esters using
CDCl3 as solvent at 300.40 MHz. Elemental analysis of the product was
performed on a Universal CHNOS Elemental Analyzer Vario EL III.

Optimal conditions of parameters such asmolar ratio, catalyst amount,
and temperature were optimized to achieve maximum biodiesel yield.
Important parameters such as viscosity, acid value (AV), and cetane
number were determined as per ASTM D6751 standards.

RESULTS AND DISCUSSION

Parameters that influence the esterification and transesterifica-
tion reaction are molar ratio, catalyst amount, temperature, and
rate of stirring. These parameters were studied separately for acid
esterification and alkaline transesterification reaction.

Optimization during Acid Esterification. The sole aim of esteri-
fication is to lower the acid value of the oil to a value within the

Table 1. Fatty Acid Composition of Pongamia pinnata

fatty acid systematic name formula structure wt%

palmitic hexadecanoic C16H32O2 16:0 8.9

stearic octadecanoic C18H36O2 18:0 8.2

oleic cis-9-octadecenoic C18H34O2 18:1 65.8

linoleic cis-9,cis-12-octadecadienoic C18H32O2 18:2 12.1

arachidic eicosanoic C20H40O2 20:0 0.9

gadoleic 11-eicosenoic C20H38O2 20:1 0.9

behenic docosanoic C22H44O2 22:0 2.8

lignoceric tetracosanoic C24H48O2 24:0 0.4

Table 2. Variation of Parameters before and after Reaction

viscosity (cSt)

at 40 �C
acid value

(mg of KOH/g)

specific

gravity

initial 26.88 19.88 0.911

after acid esterification 14.64 1.86

after alkaline transesterification 5.44 0.44 0.886

ASTM Standard D6751 1.9-6.0 0.50
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desired limit for alkaline transesterification. The stoichiometric
ratio for esterification and transesterification reaction is just 3:1.
However, as the reaction is reversible, a higher molar ratio is
employed tomove the reaction toward the formation of products.
A minimum molar ratio of 6:1 is necessary for the reaction to
achieve completion (22). Hence, variousmolar ratios ofmethanol
to oil beginning with 6:1 and above (7:1, 8:1, 9:1, and 10:1) were
tested. It was found that a 6:1 molar ratio was sufficient to lower
the acid value. Further increase in molar ratio resulted only in
generation of unreacted methanol, which is a well-known toxi-
cant (although it is biodegradable in aerobic and anaerobic
conditions) and should not be used beyond the required
amount (22-24). This will also reduce the cost of biodiesel.
Catalyst amount is another important parameter as it is respon-
sible for esterification of FFA. The concentration of H2SO4 was
varied from0.5 to 2% (v/v ratio with oil). It was observed that the
acid value reduced to just 10.88 mg of KOH/g with 0.5% of
H2SO4, which further reduced to 5.80 with 1.3% ofH2SO4; 1.5%
H2SO4 lowered the FFA value from 19.88 to 1.86 mg of KOH/g,
which later gave good conversion and yield of biodiesel on
alkaline transesterification (Table 2). A temperature variation
study was performed from 45 to 65 �C at intervals of 5 �C. It was
found that 60( 0.5 �C, which is near the reflux of methanol, was
an optimum temperature for maximum reduction of acid value.
At 45( 0.5 �C, reduction in acid value was found to be 7.06mg of
KOH/g. The reduction was found to reduce further with increase
in temperature. At 55( 0.5 �C, the value of FFA was 4.50 mg of
KOH/g, which is still above the safe limit for transesterification
reaction (i.e., 4 mg of KOH/g). Lower temperatures could not
reduce the FFA to<2%, and temperatures higher than 60( 0.5
�C showed no further reduction in FFA. Temperatures higher
than 65 �Cwerenot tried as the refluxofmethanol is 64.7 �C.Rate
of stirring was varied from 150 to 1200 rpm at intervals of
150 rpm; 600 rpm was found to be sufficient for thoroughmixing
of alcohol and oil. The same reduction of free fatty acid value
(i.e., 1.86 mg ofKOH/g) was observedwith rpm in the range from
600 to 1200. Stirring at<600 rpmcould not reduce theFFAvalue
to the desired limit. The 1 h of reaction time adoptedwas found to
be adequate for reduction of acid value to the desired limit.

Optimization during Alkaline Transesterification. The aim of
alkaline transesterification is conversion of triglycerides in the oil
to their respective methyl esters and to obtain high yield of the
product. Parameters to be optimized for alkaline transesterifica-

tion are the same as those of acid esterification. Optimization was
followed in the sequence molar ratio, catalyst amount, tempera-
ture, and then rate of stirring (i.e., agitation speed). The three
catalysts that were used for alkaline transesterification were
CH3ONa, NaOH, and KOH. Molar ratios employed during
alkaline transesterification were 6:1, 7:1, 8:1, 9:1, 10:1, and 12:1.
Of the differentmolar ratios tried, 8:1molar ratiowas observed to
be optimum for high yield of biodiesel (Figure 1). The amount of
catalyst was varied from 0.4 to 1.4 wt %. The amount of NaOH
optimum formaximum yield was found to be 0.8 wt%.NaOCH3

and KOH gave optimized yield with 1.0 wt % (Figure 2). The
lower amount of NaOH than of KOH and NaOCH3 for
optimized conversion and yield is attributed to the lower molar
mass of NaOH (40 g/mol) as compared to NaOCH3 (54 g/mol)
and KOH (56 g/mol) (25). NaOCH3 has molar mass very near
that of KOH and could be the reason the same quantity of
catalyst was required for optimum yield. Although a lesser
amount of NaOH was needed for the same yield and conversion
of biodiesel,KOHwas easily separable from themixture owing to
the soft nature of potassium soaps compared to sodium soaps.
Also, KOHwas found to bemore easily soluble inmethanol than
NaOH. This finding is in accordance with Tremblay et al. (26). It
is also suggested that the waste stream occurring from biodiesel
purificationwhile usingKOHas catalystmay act as a fertilizer for
soil due to potassium content (26). Similarly, NaOCH3 was also
easily soluble in methanol and separable from the fatty acid
methyl ester synthesized. Less catalyst resulted in lower yield,
whereas more catalyst could not increase the yield further but
rather reduced the yield substantially (Figure 2). High catalyst
amounts have caused side reaction “saponification” and might
have rendered lowered yield. Temperaturewas varied from45( 5
to 65( 5 �C at intervals of 5 �C. Yield gradually increased from
increasing the temperature from45( 5 to 60( 5 �C. Thereafter, a
decrease in yield was observed when the temperature was in-
creased to 65 ( 5 �C. Methanol has a boiling point near this
temperature, and its lossmay have resulted in lowered yield at this
temperature. A temperature of 60( 0.5 �C was optimum for the
best conversion and yield of biodiesel (Figure 3). Stirring rate was
varied from 150 to 1200 rpm. Amuch lower yield at 150 rpm was
observed, which increased on increase in agitation. The optimum
yield was found to be at 600 rpm. Beyond this, no further increase
in the yield was observed. As the oil and methanol are not
miscible, they have to be brought in contact via agitation for

Figure 1. Effect of molar ratio during alkaline transesterification on yield
(%) of karanja oil methyl esters. Catalyst amount, 1 wt %; temperature,
50 ( 0.5 �C; agitation speed, 600 rpm; reaction time, 1 h.

Figure 2. Effect of catalyst during alkaline transesterification on yield (%)
of karanja oil methyl esters. Molar ratio, 8:1; temperature, 50 ( 0.5 �C;
agitation speed, 600 rpm; reaction time, 1 h.

http://pubs.acs.org/action/showImage?doi=10.1021/jf903227e&iName=master.img-000.png&w=239&h=185
http://pubs.acs.org/action/showImage?doi=10.1021/jf903227e&iName=master.img-001.png&w=240&h=187
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the forward reaction to take place. At an agitation speed lower
than 600 rpm, sufficient contact could not be established, result-
ing in a much lowered yield (Figure 4). Reaction time was varied
from 30 to 90min to optimize the reaction time for reaction.With
NaOCH3 as catalyst, optimum yield was achieved in 45 min,
whereas 1 h of reaction time resulted in optimum yield of fatty
acid methyl esters from karanja oil with NaOH and KOH as
catalyst. Beyond this value, no significant increase in yield or
conversion was observed (Figure 5). Figure 5 thus depicts the
maximum yield with the three catalysts after optimization of all
parameters. Reduction in values of viscosity, acid value, and
specific gravity after acid esterification and alkaline transesteri-
fication has been listed in Table 2.

Calculation of Conversion and Yield. The extent of the transes-
terification of karanja oil was determined by 1H NMR spectro-
scopy.Figure 6 depicts 1HNMRspectroscopy of raw oil, whereas
Figures 7-9 depict the biodiesel developed from the raw oil with
the catalysts KOH, NaOH, and NaOCH3. Leadbeater and
Stencel (27) reported the relevant signals chosen for integration

were those of methoxy groups in the FAME (3.66 ppm, singlet)
and those of the R-methylene protons present in all triglyceride

Figure 3. Effect of temperature during alkaline transesterification on yield
(%) of karanja oil methyl esters. Molar ratio, 8:1; catalyst amount, 0.8% for
NaOH, 1.0% for NaOCH3 and KOH; agitation speed, 600 rpm; reaction
time, 1 h.

Figure 4. Effect of agitation intensity during alkaline transesterification on
yield (%) of karanja oil methyl esters. Molar ratio, 8:1; catalyst amount,
0.8% for NaOH, 1.0% for NaOCH3 and KOH; temperature, 60 ( 0.5 �C;
agitation speed, 600 rpm; reaction time, 1 h.

Figure 5. Effect of time during alkaline transesterification on yield (%) of
karanja oil methyl esters. Molar ratio, 8:1; catalyst amount, 0.8% for NaOH,
1.0% for NaOCH3 and KOH; reaction time, 1 h; temperature, 60( 0.5 �C;
agitation speed, 600 rpm.

Figure 6. 1H NMR of karanja oil.

Figure 7. 1H NMR of fatty acid methyl ester derived from karanja oil with
KOH as catalyst after transesterification.
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derivatives (2.3 ppm, triplet) of the soybean oil. Similarly,
Knothe (28) also reported methyl ester protons to peak at 3.6
ppm and the protons on the carbons next to the glyceryl moiety
(R-CH2) to peak at 2.3 ppm. An equation given by Knothe (29)
for calculation of methyl ester conversion is shown below.

conversion ð%Þ ¼ 100� ð2AME=3AR-CH2Þ ð1Þ
C is the conversion percentage of triglycerides present in the
feedstock to their respective methyl esters. AMEA1 is the integra-
tion value of the protons of the methyl esters, and AR-CH2 is
the integration value of the methylene protons. AME appears at
3.7 ppm, whereas AR-CH2 appears at 2.3 ppm. Integration of the
areas under these signals in the mentioned equation gives the
methyl ester (biodiesel) conversion. Samios et al. (30) also
discussed 1H NMR results in their study with sunflower oil.
Disappearance of the resonance signal between 4.22 and 4.42
ppm in the emergence of new signal is an indication of biodiesel
formation. A similar result has been observed with our study
(Figures 7-9). The peak obtained, which is indicative of ME
(methyl ester), is obtained at 3.661, 3.648 and 3.662, and 3.661
with the catalysts KOH, NaOH, and NaOCH3, respectively. The
conversions as calculated by the above equation were found to
be 96.8, 98.28, and 100% with KOH, NaOCH3, and NaOH,

respectively. GC studies also revealed high conversion of fatty
acids to their respective esters after identification with GC-MS. A
high yield of 95% was obtained with NaOCH3 as catalyst
followed by NaOH (92%) and KOH (90%). The high yield
obtained with NaOCH3 has been attributed to its dissociation
to Naþ and CH3O

-, whereas, in the case of NaOH and KOH as
catalyst, water is formed when dissolved in methanol, resulting in
the formation of water, which causes saponification in the
transesterification reaction. This results in lowered yield with
sodium and potassium hydroxide as compared to sodium meth-
oxide (25).

Study of Properties of Karanja Oil Methyl Esters as Fuel.

Various physical and chemical parameters of the biodiesel
(karanja oil methyl esters) were characterized with methods
ASTM D 6751 and EN 14112 and are listed in Table 3. Cetane
number, which is an indicative of ignition delay time of the fuel
upon injection into combustion chamber, was found to be 57,
which is quite above theminimum value of 47 specified byASTM
standards. The cloud formation was observed at 5 �C, and flash
point was 158 �C. A high flash point of biodiesel is an advantage
as it becomes less dangerous during storage and transport. The
ester content was observed to be between 96 and 100%, which is
indicative of high conversion of the karanja oil feedstock to
biodiesel. The EN standard reports the conversion to be, mini-
mum, 96.5%.Methanol, free glycerine, total glycerine,water, and
sediment were within the specified limit, and this confirms the
suitability of the methyl esters synthesized to be used as fuel. The
methyl esters developed could not fulfill the oxidation stability
criteria, and was found to be 2.33 h. The EN 14112 specification
warrants the oxidation stability to be, minimum, 3 h. This could
be overcomeby the addition of antioxidants.However, thismight
result in some additional cost of the biodiesel. Elemental
analysis indicated the presence of carbon as a major constituent
(75.44 wt %), with hydrogen and oxygen contents of 12.62 and
11.94%, respectively (Table 4). Nitrogen was present in a negli-
gible amount of 0.10%, and sulfur content was observed to
be <0.05%.

In conclusion, biodiesel, a renewable source of energy, has been
synthesized from an underutilized feedstock, that is, karanja. A
high yield has been achieved on optimization of parameters such
as molar ratio (oil to alcohol), amount of catalyst, temperature,
and rate of agitation of reactants by mechanical stirrer. Karanja
possessing high free fatty acid of 19.88 mg of KOH/g was
esterified with H2SO4 to lower its acid value to 1.86 mg of
KOH/g and was followed by alkaline transesterification. Para-
meters optimized during acid esterification were molar ratio 6:1
(methanol to oil) and H2SO4 (1.5% v/v) at 60 ( 0.5 �C for 1 h.

Figure 8. 1H NMR of fatty acid methyl ester derived from karanja oil after
transesterification with NaOH catalyst.

Figure 9. 1H NMR of fatty acid methyl ester derived from karanja oil after
transesterification with NaOCH3 catalyst.

Table 3. Properties of Karanja Oil Methyl Esters

parameter method value ASTM D 6751-08 limits

cetane no. ASTM D613 57 min 47

cloud point (�C) ASTM D2500 5 report

flash point (�C) ASTM D93 158 min 130

ester content EN14103 96-100 96.5

methanol (% vol) EN14100 0.12 max 0.2

free glycerin (% mass) ASTM D6584 0.01 max 0.02

total glycerin (% mass) ASTM D6584 0.15 max 0.24

water and sediment (% vol) ASTM D2709 0.035 max 0.050

oxidation stability (h) EN 14112 2.33 min 3 h

Table 4. Elemental Analysis of Biodiesel

component carbon hydrogen nitrogen oxygen sulfur

content (wt %) 75.44 12.62 0.10 11.94 <0.05

http://pubs.acs.org/action/showImage?doi=10.1021/jf903227e&iName=master.img-007.jpg&w=239&h=176
http://pubs.acs.org/action/showImage?doi=10.1021/jf903227e&iName=master.img-008.jpg&w=239&h=180
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Similarly, the same parameters were optimized for alkaline
transesterification. The optimized values obtained were 8:1
(methanol to oil) molar ratio and 0.8 wt % NaOH, 1.0 wt %
NaOCH3, or 1.2 wt % KOH to obtain optimum conversions of
100, 98.28, and 96.8%, respectively (calculated from a 1H NMR
instrument) at 60 ( 0.5 �C at 600 rpm. The reaction time was
optimized to be 45 min for NaOCH3 and 1 h for NaOH and
KOH. A high yield of 95% was obtained with NaOCH3 as
catalyst followed by NaOH (92%) and KOH (90%). The fuel
properties of the fatty acid methyl esters derived from karanja oil
fulfilled the fuel properties such as cetane number and flash point.
Also, other important parameters such as methanol content, free
glycerin, total glycerin, water, and sediment were within the limits
specified. However, the oxidation stability of the methyl esters
was lower than the minimum specification and will warrant
addition of antioxidants so that it does not deteriorate with time.
The total molar ratio of methanol to oil becomes (6þ 8) = 14:1,
which comes by adding the molar ratio (alcohol to oil) taken
during acid esterification (6:1) and alkaline transesterification
(8:1) reaction. This value of molar ratio will escalate the cost of
biodiesel. This can be managed by utilizing the unreacted metha-
nol that is formed during acid esterification as well as alkaline
transesterification. By fractional distillation, the unreactedmetha-
nol canbe recovered from the biodiesel product and can be further
reutilized tomakebiodiesel development cost-effective. Spillage of
methanol in the environment will be also be reduced in this way.
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